US009244743B1

a2z United States Patent (10) Patent No.: US 9,244,743 B1
Scott et al. (45) Date of Patent: Jan. 26, 2016
(54) REMOTELY INTERACTING WITH A (56) References Cited

VIRTUALIZED MACHINE INSTANCE
U.S. PATENT DOCUMENTS
(75) Inventors: Jonathan N. Scott, Snohomish, WA

*
(US); Vikram V. Sahijwani, Kirkland, 7694208 B2 © 42010 Coudetal. ooy 7181

, A 7,987,305 B2* 7/2011 Blairetal. 710/300
WA (US); George Oliver Jenkins, 8,219,990 B2* 7/2012 Khannao..... 718/1
Redmond, WA (US) 8,301,746 B2* 10/2012 Headetal. 709/223
8,635,616 B2* 1/2014 Yangetal.ccccccocoennnne 718/1
(73) Assignee: Amazon Technologies, Inc., Seattle, WA 8,667,207 B2* 3/2014 Knowles el al. ... - 7116
(US) 2006/0010440 Al1* 1/2006 Andersonetal. 718/1
2011/0237234 Al* 9/2011 Kotanietal. 455/418
(*) Notice: Subject to any disclaimer, the term of this * cited by examiner

patent is extended or adjusted under 35

U.S.C. 154(b) by 417 days.
Primary Examiner — Van Nguyen

(21) Appl. No.: 13/563,940 (74) Attorney, Agent, or Firm — Lee & Hayes, PLLC
22) Filed: Aug. 1, 2012
(22) File e (57) ABSTRACT

(1) Int. C1. A system and method for remotely interacting with a virtual-

gzgi zg‘;‘s (38828}) ized machine instance (VMI) through a trigger mechanism

(0D) resident at the VMI. When the VMI receives a request via the

(52) US.CL trigger mechanism, the VMI responds to the request, such as
CPC GO6F 9/5077 (2013.01); GO6F 9/45533

by obtaining a program and executing the program locally at

(2013.01) the VML
(58) Field of Classification Search
CPC GOG6F 9/45533; GO6F 9/5077; GO6F 9/45537
See application file for complete search history. 30 Claims, 5 Drawing Sheets

700

Periodically poll
the VMI Manager

Request program
7| forupdating

[708

Tetrieve program

Retrieve program
om other location,

from other location

Yes
h J

o~ Execute program

as progrant
successiully
executed?

Yes

Indicate
successful update [——
716 | to vvi Manager

Return errar to
YMI Manager

718/

US 9,244,743 B1

Sheet 1 of 5

Jan. 26, 2016

U.S. Patent

OTT 431nA3HIS

(439YNYIN [INA)
90T ¥IAVT NOILYZITVNLHIA

(

INA INA INA

(NJ80l mo@ ﬁj|m wo@ﬁaaw

91T
SNOILYDITddY ZTT 40Ss3204(d
VTT AYOWIN
VOT ¥3AY3S
0l

00T I\

(N)vOL Loaow

N,

‘

(2)¥01 Joniss

1 ol

(

QCT SNOILYIITddY u

GTT ANOWIN

(

T 40sS3008d

TCT YInYIs

3

M

‘

(1)v01 Janies

|

(T)ocT

32IA3A LN3TIND

(NJoTT

32I1A3A LN3TIND

U.S. Patent Jan. 26, 2016 Sheet 2 of 5 US 9,244,743 B1

(SERVER 104 if ----- S;?\/‘ER_ _____ \
VMY VM) (VM 7 \/ Y 7 \
() () () Ko X L)
VIRTUALIZATION LAYER R . "V;T;AEZA'TIO_N ‘LAY_ER.\ |
(VMI MANAGER) I VMM . |
106 o\ VMM
. ~— e —_ -l

Data Center 200

Client ~~
300
302
304
Provisioni
APL] Provsiong ke of [VMI(1) i) | | vminy
z
306~ Server 308
4
319" | [Program 314 |
Data Store

FIG. 3

U.S. Patent

Jan. 26, 2016

Sheet 3 of 5

US 9,244,743 B1

Agent 404

Trigger Mechanism Interface

Trigger Service

408

VMM 4

o
o>

FIG. 4

My Instances

FIG. 5

Name Instance VMI ID Root Device

| Domain ConEtoIIer VMI1 ID1 storage
Large SQL Test VMI2 e
| Network Test VMI3 | Instance Mangagement
O Patch1 VMI4 Connect

Get System Log
O Patch 2 VMI5 Creat iamge

® Update Instance <
L Change User Data N
504 506

U.S. Patent

Instantiate VMI
with client
interface

602

Does
VMI functionality
eed changing?,

Yes

v

Send out
command to
VMI(s)

\604

Send out program
to VMI(s) for
update

\606

Received
confirm from
VMI(s)?

No

v

Output error in
updating VMI(s)

FIG. 6

Jan. 26, 2016

Yes

[~
610

Sheet 4 of 5

700,

f708

Retrieve program
from other location

US 9,244,743 B1

Periodically poll
the VMI Manager

—¥(

No

Need to
update?

Yes
Y

Request program
for updating

/
704

lg¢—No

710

Has program
been received?

Yes
Y

~] Execute program

712

714

as program
successfully
executed?

Yes

¥

Indicate
1 successful update
716 to VMI Manager

Return error to
VMI Manager

718/

FIG. /7

U.S. Patent

Jan. 26, 2016

[808

Sheet 5 of 5

800_|

Receive request to

activate trigger
mechanism

Yes

v

Identify the server
hosting the VMI
based upon the

request

—
804

Notify other device
to prompt trigger
mechanism at VMI

806

Is direct
prompt of the

<=No trigger possible?

Yes

4

Prompt trigger
mechanism at VMI

810" |

812

Was action effected
at VMI?

Yes

v

Indicate
successful action

US 9,244,743 B1

814

to VMI Manager

Return error to

VMI Manager

816/

FIG. 8

US 9,244,743 B1

1
REMOTELY INTERACTING WITH A
VIRTUALIZED MACHINE INSTANCE

BACKGROUND

Large-scale, network-based computing represents a para-
digm shift from traditional client-server computing relation-
ships. With large-scale, network-based computing platforms
(e.g., data centers), customers are able to leverage shared
resources on-demand by renting resources that are owned by
third parties and that reside “in the cloud.” With these
resources, customers of the platform are able to launch and
maintain large applications without actually owning or ser-
vicing the underlying infrastructure necessary for these appli-
cations. As such, network-accessible computing platforms,
often referred to as “cloud-computing platforms’ or “cloud-
computing environments,” have expanded the class of indi-
viduals and companies able to effectively compete in the
realm of computing applications.

Generally, customers of a network-based computing plat-
form launch and maintain large applications within the net-
work-based computing platform through the use of one or
more virtualized machine instances (VMI). VMIs can be
created by the network-based computing platform and many
VMIs can be instantiated and controlled by a single-network
based computing platform. The VMIs can be in continuous
operation for a customer within the cloud, and thus, can be
critical in operation to the customer such that failure of a VMI
would have serious repercussions to the customer.

However, just like the software on actual computers, the
software functionality in the VMI must be updated and main-
tained. Typically, this is accomplished by connecting to the
VMI through a network, or other data transfer route, into the
VMI such that the code, such as a patch or script, can be
loaded into the VMI through the standard data intake mecha-
nism and then executed to update the VMI. One problem
arises however in that the VMI must devote resources for the
data transfer operations, where such resources are also being
allocated for typical usage in the operation of the VMI. More-
over, should a large number of VMIs need updating, the time
frame for the update is delayed until the VMIs can allocate the
resources to effect the code import and execute it. If the
update is extremely urgent, then any delay in getting the
instantiated VMIs updated could prove detrimental to the
operation of the VMIs and harmful to the customers that use
them.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 illustrates an example of a computing environment
in which VMIs are uploaded to a network-accessible comput-
ing platform and provided to a client device.

FIG. 2 illustrates an example of a series of servers in a data
center servicing a plurality of VMIs.

FIG. 3 is a block diagram illustrating one embodiment of a
service provider environment for VMIs that are accessible by
a client device.

FIG. 4 is a block diagram of one embodiment of a trigger
mechanism interface with the control plane of the VMI Man-
ager.

FIG. 5 is one embodiment of a customer interface that
allows the customer at the client device to purposely alter
functionality with an instantiated VMI.

FIG. 6 illustrates one embodiment of a process executing
on the VMI Manager to instantiate a VMI and then cause the
VMI to update its operation with one or more computer
programs through a command API at the VML

10

15

20

25

30

35

40

45

50

55

60

65

2

FIG. 7 illustrates one embodiment of a process executing
within a VMI to periodically pool the VMI manager and
selectively import one or more computer programs for execu-
tion therein.

FIG. 8 illustrates one embodiment of a process executing
on a server providing an API to client devices to allow the
clients to prompt the trigger mechanism in the VMI.

DETAILED DESCRIPTION

This disclosure describes a system and method for
remotely interacting with a virtualized machine instance
(VMI) through a trigger mechanism resident at the VMI.
When the VMI receives a request via the trigger mechanism,
the VMI responds to the request, such as by obtaining a
program and executing the program locally at VMI, or other-
wise alters functionality based upon the trigger. In one
embodiment, the system for remotely triggering a function on
one or more virtualized machine instances (VMIs) includes a
computer platform that selectively provides one or more
VMIs that are accessible to one or more client devices across
a network. A VMI manager is resident on the computer plat-
form that, at least, maintains the operation of the one or more
VMIs, and the VMI manager is configured to instantiate a
VMI such that the VMI includes at least a trigger mechanism
configured to selectively receive one or prompts from the
VMI manager to alter VMI functionality.

In one embodiment, the trigger mechanism polls the VMI
manager to determine if VMI functionality requires alter-
ation, the VMI manager pushes a notification that causes the
trigger mechanism to poll the VMI manager, and/or the VMI
manager pushes information to the VMI. In an example
embodiment, the trigger mechanism is an application pro-
gramming interface (API) to the VMI manager. The trigger
mechanism can be configured to alter the VMI through
obtaining and executing one or more computer programs, or
alternately, can change functionality at the VMI. In another
embodiment, the VMI manager is further configured to
instantiate the VMI such that the VMI indicates to the VMI
manager that at the VMI has been altered, thus confirming the
successful execution of the trigger mechanism.

The system can include a server, or other computer plat-
form that selectively hosts one or more application program-
ming interfaces (APIs) accessible on a network. The APIs are
accessible to the one or more client devices across a network
such that each API can be invoked and one or more messages
can be sent to the server that hosts the VMI. A VMI manager
running on the host can receive the one or more messages and
selectively interact with a trigger mechanism at the VMI.

In accordance with various embodiments, the shared com-
puting environment is a network-accessible computing plat-
form (commonly referred to as a “cloud” computing environ-
ment). For instance, one or more entities may host and operate
a network-accessible computing platform that includes dif-
ferent types of network resources, such as a storage service, a
load balancing service, a compute service, a security service,
or any other similar or different type of network-accessible
service. The services are performed using various computing
devices, wherein the computing devices include one or more
processors that each includes one or more processing cores.

FIG. 1 illustrates an environment 100 for instantiating
VMIs utilizing a cloud-based environment. The environment
of FIG. 1 includes a network-accessible computing platform
or services provider 102 that provides network-accessible
computing services via a network of computing devices rep-
resented as one or more servers 104(1), 104(2), . . ., 104(N),
which may include both resources and functionality. The

US 9,244,743 B1

3

network-accessible computing platform 102 and its services
may be referred to as Infrastructure as a Service (IaaS) and/or
Platform as a Service (PaaS). The computing devices avail-
able to provide computing services within the network-acces-
sible computing platform 102 may be in the form of dedicated
servers, shared servers, virtual servers, server slices, proces-
sors, processor cycles, and so forth. While FIG. 1 illustrates
the computing devices in the form of servers 104, this is not
meant to be limiting and is presented as such simply for ease
and clarity.

As illustrated, each of the servers 104 may include a virtu-
alization layer 106, such as a hypervisor or a VMI manager
(VMM) that can create one or more virtual machine images
(VMI)108(1),108(2), . . . 108(N) for sharing resources of the
server 104, if creation of the one or more virtual machine
images 108 is needed. As illustrated, the virtualization layer
106 may also include a scheduler 110. The scheduler 110 may
generally control processing cores of processors to perform
various functions and execute various instructions within the
network-accessible computing platform 102 on behalf of the
virtual machine images 108. While FIG. 1 illustrates the
scheduler 110 as residing within the virtualization layer 106,
the scheduler 110 may reside in other locations in other
implementations.

Each ofthe servers 104 also generally includes one or more
processors 112 and memory 114, which may comprise any
sort of computer-readable storage media and may store one or
more applications 116. The servers may also include one or
more other components typically found in computing
devices, such as communication connections, input/output
1/0 interfaces, and the like. The hypervisor, VMM or any of
the software management layers shown herein can be uni-
formly executed in the same program space on the same
server 104, or can be broken out individually based upon
functionality and the programs can be resident on several
servers.

One or more client devices 120(1), 120(2), . . . , 120(N)
communicate and interact with the network-accessible com-
puting platform 102 in order to obtain computing services
from the network-accessible computing platform 102. The
client devices 120 communicate with the network-accessible
computing platform 102 via a network, such as, for example,
the Internet and communication connections and I/O inter-
faces. Generally, the computing services from the network-
accessible computing platform 102 are available to the client
devices 120 in scalable increments or amounts, which can be
dynamically increased or decreased in response to usage and/
or demand. Service fees may be tied to the amount of the
resources that are actually used.

Generally, the client devices 120 are in the form of one or
more servers 122. However, this is not meant to be limiting
and it is presented as such for ease and clarity. Similar to the
network-accessible computing platform 102, each of the one
ormore servers 122 that make up a client device 120 generally
includes one or more processors 124 and memory 126. The
memory 126 generally has stored therein one or more appli-
cations 128. These various modules and associated tech-
niques will be further described in more detail herein.

The computing services available from the network-acces-
sible computing platform 102 may include functional ele-
ments or services. Functional elements or services may com-
prise applications or sub-applications that are used as
building blocks for client device applications. For example,
the network-accessible computing platform 102 may provide
predefined database functionality in the form of a discrete
service that can be instantiated on behalf of a client device.
Functional components may relate to network communica-

10

25

40

45

50

55

4

tions and other services or activities. Network-related ser-
vices may, for example, include firewalls, load balancers,
filters, routers, and so forth. Additional functional compo-
nents may be available for such things as graphics processing,
language translation, searching, etc.

The computing services may also be characterized by ser-
vice types or categories, such as by the types or categories of
services they provide. Different types or categories of ser-
vices may include database services, web servers, firewalls,
file replicators, storage services, encryption services, authen-
tication services, and so forth. In some embodiments, services
may be categorized at a relatively high level. For example, a
“database services” category may include various different
implementations of database services. In other embodiments,
services may be categorized more specifically or narrowly,
such as by type or family of database services. In embodi-
ments such as this, for example, there may be different cat-
egories for relational databases services and non-relational
database services, and for SQL and other implementations of
databases services.

Service parameters for the computing services provided by
the network-accessible platform 102 may correspond to
options, configuration details, speeds, capacities, variations,
quality-of-service (QoS) assurances/guaranties, and so forth.
In the example of a database service, the service parameters
may indicate the type of database (relational vs. non-rela-
tional, SQL vs. Oracle, etc.), its capacity, its version number,
its cost or cost metrics, its network communication param-
eters, and so forth.

With reference to FIG. 2, the present system, in one embodi-
ment, instantiates the VMIs 108(N) such that programmatic
interaction of VMIs is available with a computer platform
such as network-accessible computing platform 102 that
selectively provides one or more VMIs that are each acces-
sible to one or more client devices 120 across anetwork. Such
interaction can be the execution of a program, such as a patch,
code or update, or can be changing the operational character-
istics of'the VM1, resetting passwords or other security, gath-
ering operational metrics of the VMI, or causing reconfigu-
ration of the operational components.

The computer platforms can be resident on one or more
servers 104, which can be in a data center 200 and managed as
cloud computing resources, as are known in the art. A VMI
manager, such as a hypervisor, or virtualization layer 106
resident on or accessible to the computer platform 102 that, at
least, maintains the operation of the one or more VMIs on
behalf of one or more customers. The VMI manager will
instantiate each VMI 108(N) such that the VMI includes at
least one trigger mechanism, such as an application program-
ming interface (API) or an agent. In an example embodiment,
the trigger mechanism can be used to interact with operating
systems or applications running in the VMI so as to, for
example, selectively receive one or more computer programs
(such as a patch or script) from the VMI manager (virtualiza-
tion layer 106) that can be executed within the VMI. The
trigger mechanism can also be implemented as an event chan-
nel, common data store, a hyper-call or other command level
access between the VMI and the VMI manager.

In one embodiment, the API of the VMI 108(N) can be used
to poll the VMI manager to determine if there are any trigger
prompts, such as prompts indicating one or more computer
programs are to be received and executed within the instan-
tiated VML. For example, the VMM 106 can run a web server
and a program running in the VMI 108(N) can periodically
issue web service calls to the web server to determine if there
are any trigger prompts. Alternately, the VMI manager 106
can push prompts out to the VMI. Furthermore, VMI can

US 9,244,743 B1

5

report information to the VMI indicating to the VMI manager
that the functionality at the VMI has been altered as
requested.

The system and method accordingly provide the ability for
the instantiated VMI 108(N) to be patched, updated, or oth-
erwise have programs selectively executed without needed to
open a data port or other data path access to the VMI. Thus, no
network traffic needs to be passed to the VMI as all commu-
nication is inherently secured locally in the hypervisor (vir-
tualization layer 106).

Moreover, communication can even occur if the VMI 108(N)
is off the network, or if the firewall of the VMI is set to allow
no communications. In one embodiment, when the VMI is
instantiated, it will contain the code that causes an API to be
the trigger mechanism for updating code, such as patching,
enabling or disabling network adaptors, or performing con-
figurations that would otherwise require a physical console or
the VMI to be reachable on the network. The system can also
be embodied to allow customers (such as client devices 102)
to remotely patch their VMIs without having to open up any
ports, as is shown in FIG. 5 herein. And importantly, an
emergency roll-out of updates to VMIs can occur quickly
without waiting for the VMI to have the requisite ability to
invoke the standard data communication paths.

FIG. 3 is a block diagram illustrating one embodiment of a
service provider environment for VMIs that are accessible by
a client device 330. The client 300 can be a computer with a
browser or a software development kit that includes code to
invoke the API or trigger mechanism at the VMI (such as
VMI(1)-VMI(N) on server 308). The client 300 is connected
through a network 302 (which can be the Internet, or other
public and private networks) to an API server 304, which can
be a web server configured to receive API calls or send web
pages to clients. The API server 304 receives client 300
requests, and de-serializes the API calls and sends the sub-
stance of the requests to the provisioning server 306. For
example, the client 300 can issue an HTTP operation such as
a GET or PUT operation to the API server 304 that includes
information such as an access key or key identifier, a digital
signature, an action, and any needed parameters. The action
can describe how to interact with the VMI, e.g., the action
could be “Patch,” “Reset Credentials,” “Report metrics,”
“Run program,” and the parameters could identify what patch
or apply or program to run and the identifier for the VMI or
VMIs. The API server 304 can de-serialize the API call and
send the data to provisioning server 306. The provisioning
server 306 then authenticates the user using the access key or
key identifier and the digital signature and determines
whether the user is authorized to invoke the command. Here,
an access control policy can be invoked. Assuming the user is
authorized, the provisioning server 306 determines where the
VMLl is in the provider network (such as VMIs that are acces-
sible on server 308) and sends a message to the server 308
hosting the VMI. Such access can all occurs over the control
plane for the VMIs. Conversely, traditional user traffic runs on
the data plane though separate management channels to send
commands to servers. The server 308 that receives the mes-
sage and determines the VMI to communicate with. The
server 308 can optionally authenticate the message to make
sure the message is valid. The server 308 then uses the trigger
interface to deliver a message to the VMI using an API, a
hyper-call, or an agent as is shown more particularly in FIG.

InFIG. 3, the system is shown as embodied with a common
data store 312 that has a resident program 314 that is to be
obtained and executed by the VMI. Thus, this architecture
would correspond to the process illustrated in FIG. 7 where

10

15

20

25

30

35

40

45

50

55

60

65

6

the client 300 will have the VMI instance look to another
network location for a program or other command or data. In
one embodiment, the trigger mechanism itself can be the
common data store 312 wherein the mere presence of a pro-
gram, etc., is the triggering event. Thus, in operation, the
provision server 306 would push the program, data, etc., to
the data store 312, and such would serve as a prompt to the
VMI. The VML, in this embodiment, would thus periodically
check the data store 312 to see if any data is present.

FIG. 4 is a block diagram of one embodiment of a trigger
mechanism interface with the trigger service 408 of the VMI
Manager (VMM) 406 and the trigger mechanism embodied
as an agent 404 resident at the VMI 400. In an embodiment,
the VMM 406 can communicate with the agent 404 in the
VMI 400 via an event channel or other command level inter-
face. In one embodiment, the trigger mechanism interface
allows the agent 404 and the VMM 406 to communicate via
asynchronous inter-domain notifications through ring buffers
in shared memory pages.

Alternately, the trigger mechanism interface can allow the
VMM 406 to deliver a bit to the agent 404 that indicates that
a prompt has arrived. This causes the agent 404 to check the
data store 312 (FIG. 3) to get the request. The agent 404 can
obtain the prompt and optionally the program to be applied
from the shared data store 312. The agent 404 can then oth-
erwise take an action in the VMI 400 in response to the
prompt, such as applying patches to the VMI OS 402, dis-
abling network cards or other data paths, gather performance
metrics, etc.

FIG. 5 is one embodiment of a customer interface 500 that
allows the customer at the client device (client 300 in FIG. 3)
to interact with an instantiated VMI using a graphical user
interface. In this embodiment, the client 300 has a browser
that obtains a webpage that shows the list of instances asso-
ciated with the user’s account. For example, an SQL test 502
can be requested for the VMI2 instance (which is resident on
server 308 in FIG. 3). A command window 504 will come up
that allows the user to specifically update the VMI instance
(update instance 506) with the SQL test 502 function. Other
features, such as patches, network tests, and domain switch-
ing are likewise possible on the one or more identified
instances.

It should be noted that the system can be embodied such
that the client 300 (FIG. 3) uses a software development kit
such that the client can programmatically invoke the com-
mands instead of doing it through a browser, as described
above. The customer interface 500 is merely shown as illus-
trative of one embodiment where the client can have com-
mand level access to instantiated VMIs.

FIGS. 6 and 7 are processes that the architecture of FIGS.
1, 2 and 3 may implement. These processes (as well as other
processes described throughout) are illustrated as a logical
flow graph, each operation of which represents a sequence of
operations that can be implemented in hardware, software, or
a combination thereof. In the context of software, the opera-
tions represent computer-executable instructions stored on
one or more computer-readable storage media that, when
executed by one or more processors, perform the recited
operations. Generally, computer-executable instructions
include routines, programs, objects, components, data struc-
tures, and the like that perform particular functions or imple-
ment particular abstract data types. The order in which the
operations are described is not intended to be construed as a
limitation, and any number of the described operations can be
combined in any order and/or in parallel to implement the
process. Furthermore, while the architectures and techniques
described herein have been described with respect to net-

US 9,244,743 B1

7

work-accessible computing platforms, the architectures and
techniques are equally applicable to other computing envi-
ronments and computing devices.

FIG. 6 illustrates one embodiment of a process executing
on the VMI Manager (virtualization layer 106) to instantiate
a VMI 108(N) and then cause the VMI to update its operation
with one or more computer programs through a command
API at the VMI. The VMI is instantiated with a trigger inter-
face, as shown at step 600, such that a customer, at the client
102, can use the VMI manager to interact with the VMI such
as by trigger computer program intake and updating at the
VMILI. In response to receipt of a request to interact with the
VM1, a determination is then made as to whether one or more
programs need to be updated within the VMI, as shown at
decision 602. If no program needs updating at decision 602,
the process iterates at the decision to await an update com-
mand or indication. When one or more programs need updat-
ing at decision 602, then the process sends out a command to
the VMI that it needs to update its resident code, as shown at
step 604.

In this embodiment, then VMI manager then pushes out the
program(s) that are to be executed in the instantiated VMI, as
shown at step 606. Thus, here, the VMI manager is causing
the trigger and pushing out programs for updating. Then a
determination is made as to whether the VMI has confirmed
that the program(s) has been received and executed at the
VMI, as shown at decision 608. If confirmation has been
received at decision 608, then the process iterates to decision
602 to await further updating of the program(s) at the VMIs.
Otherwise, if confirmation is not received at decision 608,
then an error is output to the VMI manager, as shown at step
610, indicating that the update was not successful and the
process again iterates to decision 602 to await further updat-
ing.

It should be noted that several functionalities are included
in the process of FIG. 6 that are merely shown for illustration,
such as the sending of programs at step 604 and the confir-
mation receipt of decision 608. Other functionalities can like-
wise be added to the process of FIG. 6 to enhance the ability
to update the VMI(s) without causing a data port or other
communication pathway to necessarily open.

FIG. 7 illustrates one embodiment of a process executing
within an instantiated VMI to periodically poll the VMI man-
ager (virtualization layer 106) and selectively import one or
more computer programs for execution therein. The VMI
manager is periodically polled by the VMI, as shown at step
700, and then a determination is made as to whether a resident
program(s) needs to be updated, as shown at decision 702. If
not program(s) need updating at decision 702, then the pro-
cess iterates to step 700 to periodically poll the VMI manager.
It should be noted that this embodiment of polling the VMI
manager for updates is not necessary in push-command
update, as shown in FIG. 3. If the program(s) need updating at
decision 702, then the VMI requests the program forupdating
as shown at step 704, and a decision is then made as to
whether the program(s) needed for update are to be obtained
from a different network location, as shown at decision 706.
Thus, in this embodiment, the VMI can obtain program(s)
(code, scripts, patches, etc.) from other locations, such as
those provided by a customer.

If the program needs to be retrieved at another location at
decision 706, then the program is retrieved from the location,
as shown at step 708. Otherwise, if the program does not need
to be retrieved from another location, or once the program is
retrieved at step 708, a determination is made as to whether
the program has been received as shown at decision 710. If the
program needed for updating has not been received by the

20

25

30

40

45

55

60

8

VMI at decision 710, then an error is returned to the VMI
manager as shown at step 718, and then the process iterates to
again periodically poll the VMI manager at step 700.

Otherwise, if the program for updating has been received at
decision 710, then the received program is executed as shown
atdecision 712, and a determination is made as to whether the
program was successfully executed at the VMI, as shown at
decision 714. Ifthe program was not successfully executed at
decision 714, then an error is returned to the VMI manager at
step 718, and the process iterates to periodically poll the VMI
manager as shown at step 700. Otherwise, if the program was
successfully executed at the VMI at decision 714, the suc-
cessful execution is indicated to the VMI manager as shown at
step 716, and the process iterates to periodically poll the VMI
manager at step 700. In this embodiment, the confirmation
from the VMI of program execution at step 716 will interface
with the confirmation determination of the VMI manager at
decision 608 in FIG. 6.

FIG. 8 illustrates one embodiment of a process executing
ona server, such as server 104(N) in FIG. 1, providing an API
to client devices 120(N) to allow the clients to prompt the
trigger mechanism in the VMI 108(N). A request is received
at the server 104(N) from a client device 120(N) host the API
to activate a trigger mechanism in one or more VMIs, as
shown at step 800, and then a determination is made as to
whether that client is authorized to activate the trigger mecha-
nism as requested, as shown at decision 802. If not authorized
at decision 802, then the process iterates to step 800 to await
a new request from an API at a client device 120(N). If the
client device 120(N) is authorized at decision 802, then the
physical server hosting the VMI that the request is for is
identified as shown at step 804, and a decision is then made as
to whether the direct prompting of the trigger mechanism of
the VMI is possible, as shown at decision 806.

Thus, in this embodiment, the server 104(N) can either
directly locate the server of the VMI and prompt the trigger
mechanism, or can notify another device to cause the trigger
mechanism to be prompted. It should be noted that either of
these paths can be the sole mechanism to attempt to prompt
the trigger mechanism at the VMI.

Thus, if another computer device needs to prompt the VMI
trigger mechanism at decision 806, then the other device is
notified to prompt the VMI trigger mechanism, as shown at
step 808. Otherwise, if the direct triggering of the VMI is
possible at decision 806, then the trigger mechanism is
directly prompted as shown at step 810. Once the other device
is notified at step 808, or the trigger mechanism has been
prompted at step 810, a determination is made as to whether
the action was effected at the VMI as shown at decision 812.

Ifthe action has not been effected the VMI at decision 812,
then an error is returned to the VMI manager as shown at step
816, and then the process iterates to again await another
request from a client device 120(N) at step 800. Otherwise, if
the action has been successfully effected at decision 812, the
successful execution is indicated to the VMI manager as
shown at step 814, and the process iterates to await further
requests from the client device 120(N) at step 800.

Although the subject matter has been described in lan-
guage specific to structural features and/or methodological
acts, it is to be understood that the subject matter defined in
the appended claims is not necessarily limited to the specific
features or acts described. Rather, the specific features and
acts are disclosed as exemplary forms of implementing the
claims.

What is claimed is:

1. A system for remotely triggering a function on one or
more virtualized machine instances (VMIs), comprising:

US 9,244,743 B1

9

a computer platform comprising one or more computing
devices having one or more processors that selectively
provide one or more VMIs that are accessible to one or
more client devices across a network; and

a VMI manager resident on at least one of the one or more
computing devices of the computer platform that, at
least, maintains operation of the one or more VMIs, the
VMI manager to instantiate a VMI such that the VMI
includes at least one trigger mechanism, wherein the at
least one trigger mechanism is to periodically poll the
VMI manager to determine an existence of a trigger
prompt indicating a program to be received and executed
within the VMI to update a resident program of the VMI.

2. The system of claim 1, wherein the at least one trigger
mechanism is an application programming interface (API).

3. The system of claim 1, wherein the VMI is to indicate to
the VMI manager that the VMI has been altered.

4. The system of claim 1, wherein the VMI is to:

retrieve the program in response to determining the exist-
ence of the trigger prompt, and

execute the program to update the resident program.

5. The system of claim 4, wherein the VMI is to determine
whether the program is to be retrieved from another computer
resource accessible to the VMI over the network, and wherein
retrieving the program comprises retrieving the program from
the other computer resource over the network.

6. A system for remotely triggering a function on one or
more virtualized machine instances (VMIs), comprising:

a computer platform comprising one or more computing
devices having one or more processors that selectively
provide one or more VMIs, individual ones of the one or
more VMIs being accessible to one or more client
devices across a network, the computer platform further
including a VMI manager resident on at least one of the
one or more computing devices of the computer plat-
form that is to instantiate a VMI such that the VMI
includes at least one trigger mechanism to poll the VMI
manager at multiple different times to determine if func-
tionality of the VMI requires alteration.

7. The system of claim 6, wherein the VMI manager is
further to push one or more prompts to the at least one trigger
mechanism of the VML

8. The system of claim 6, wherein the at least one trigger
mechanism is to alter the VMI through obtaining and execut-
ing one or more computer programs.

9. The system of claim 8, wherein the VMI manager is to
provide an ability to the one or more client devices to send the
one or more computer programs for execution in the VMI.

10. The system of claim 6, wherein the VMI is to indicate
to the VMI manager that the functionality of the VMI has been
altered.

11. The system of claim 6, wherein the at least one trigger
mechanism is instantiated to receive a command from the
VMI manager to obtain one or more computer programs from
other computer resources accessible to the VMI on the net-
work.

12. The system of claim 11, wherein the network comprises
the Internet.

13. The system of claim 6, wherein the VMI manager is to
instantiate the at least one trigger mechanism such that the
VMI includes a control plane that is accessible to the one or
more client devices across the network.

14. The system of claim 6, wherein the computer platform
is further to provide an interface to at least one of the one or
more client devices to alter specific functionality in the VMI.

20

25

30

35

40

45

50

55

60

10

15. The system of claim 6, wherein the VMI is instantiated
to include an application programming interface (API) for
communication to the VMI manager.

16. The system of claim 6, wherein the at least one trigger
mechanism is an agent at the VMI.

17. The system of claim 6, further comprising a web server
to:

receive application program interface (API) requests to

interact with individual ones of the one or more VMIs
from one or more customers; and

in response to a request associated with the VMI, send one

or more messages to the computer platform to cause the
VMI manager to interact with the VMI via the at least
one trigger mechanism.

18. A method for remotely triggering execution of a pro-
gram on one or more virtualized machine instances (VMIs),
comprising:

selectively providing one or more VMIs, individual ones of

the one or more VMIs being accessible to one or more
client devices across a network;
instantiating a VMI of the one or more VMIs such that the
VMI includes at least one trigger mechanism to poll a
VMI manager at multiple different times to determine if
functionality of the VMI requires alteration; and

receiving, from the at least one trigger mechanism, poll
messages to determine if the functionality of the VMI
requires the alteration.

19. The method of claim 18, further comprising pushing,
from the VMI manager, a prompt to the at least one trigger
mechanism of the VML

20. The method of claim 18, further comprising altering the
functionality of the VMI by executing one or more computer
programs at the VMI.

21. The method of claim 20, further comprising the VMI
manager providing an ability to the one or more client devices
to send the one or more computer programs for execution in
the VMI.

22. The method of claim 18, further comprising receiving
notice from the VMI indicating that the functionality of the
VMI has been altered.

23. The method of claim 18, further comprising, in
response to determining that the functionality of the VMI
requires the alteration, obtaining one or more computer pro-
grams from other computer resources accessible to the VMI
on the network, the one or more computer programs to alter
the functionality upon execution of the one or more computer
programs within the VMI.

24. The method of claim 18, further comprising instantiat-
ing the one or more VMIs such that the one or more VMIs
include a control plane that is accessible to the one or more
client devices across the network.

25. The method of claim 18, further comprising providing
an ability to the one or more client devices to alter the func-
tionality in the VML.

26. The method of claim 18, wherein the at least one trigger
mechanism is instantiated as an agent at the VMI.

27. The method of claim 18, wherein the VMI is instanti-
ated to include an application programming interface (API)
for communication to the VMI manager.

28. A non-transitory computer readable storage medium
that, upon execution by one or more processors, causes the
one or more processors to remotely trigger a function on one
or more virtualized machine instances (VMIs) by:

selectively providing one or more VMIs, individual ones of

the one or more VMIs being accessible to one or more
client devices across a network;

US 9,244,743 B1
11

instantiating a VMI of the one or more VMIs such that the
VMI includes at least one trigger mechanism to periodi-
cally poll a VMI manager to determine if functionality of
the VMI requires alteration; and
receiving, from the at least one trigger mechanism, poll 5
messages to determine if the functionality of the VMI
requires the alteration.
29. The non-transitory computer readable storage medium
of claim 28, that upon execution, further causes selectively
receiving notice from the VMI indicating that the functional- 10
ity of the VMI has been altered.
30. The non-transitory computer readable storage medium
of claim 28, that upon execution, further causes, in response
to determining that the functionality of the VMI requires the
alteration, obtaining one or more computer programs from 15
other computer resources accessible to the VMI on the net-
work, the one or more computer programs to alter the func-
tionality upon execution of the one or more computer pro-
grams within the VMI.

#* #* #* #* #* 20

